
Like distributed systems?

You’re in the wrong room then.

Or ...

Are we doing Fashion-Driven

Development?

Or ...

Has the world gone crazy or is

it me?

Disclaimer

• This is just a subjective view of one developer
• Even my (ex) coworkers have different views
• There’s a good chance that I will change my view over time

My experience (1)

• 18 years of professional work

• Mostly enterprise market

• 40+ projects
• few products in production for more than 10 years, mutliple major upgrades

• Never worked on:
• High traffic stuff

• Heavy analytics

• AI, machine learning etc...

• Huge platforms that comprise big portion of enterprise infrastructure (many big
services/applications...)

My experience (2)

• Development team size: 1 to 8, usually 2-4

• Project duration: 2 months to 1 year, usually 4-6 months

• Project size: 150 to 1,500 classes, usually around 600 classes

• Traffic requirements:
• usually less than 10 req/sec

• sometimes few tens of req/sec

• rarely hundreds of req/sec

• what the hell is „request” anyway?

• Don’t know what „serious” project mean to anyone, but lot of them not
considered simple
• Price tag: from few 10,000s to few 100,000s euros

• At least 80-90% of projects out there fit this description?

Initial years

(up to 2010)

Development description

• Usually two full-stack developers, sometimes solo

• Monolithic, 3-tier architecture (web, service and DB layer)

• Single SQL database, using just basics (table, view, index, sequence)

• Mostly synchronous logic

• Server-side web UI

• Deployed as 2 node setup (install Java, install Tomcat, copy application
.war file, single log file)

Advanced years

New fashion

• Breaking the monolith
A.K.A. Distributed architectures
A.K.A. „Microservices”

• Asynchrony

• Big data

• Message-driven communication

• Cloud

• Horizontal scalability

• JavaScript front-ends

As far as I’ve seen, it mostly wasn’t the customer
that mandated change!

• Functional requirements not more complex than before

• Traffic requirements are bigger than before, but not
significantly
• BTW, performance of hardware and software stack continuosly

improved over the years!

End result

• No, the projects haven’t failed!

• The projects delivered within deadline

• The projects had sufficient quality. Or not.

• But, what about:
• Amount of resources required?

• Amount of testing required?

• Amount of knowledge required?

• Development moral?

• But your CVs will look awesome!

Microservices

First rule of distributed systems:

Don’t distribute!

Microservices - Pros

• Justification – „decoupling”

• But there are many types of decoupling – process decoupling
is just one (heavyweight) type

• Pros:
• Stronger code decoupling (no „big ball of mud”)

• Execution/memory isolation - autonomy

• Separate scaling strategy

• DB or language flexibility

Microservices – Cons (1)

• Remote instead of local call
• Code complexity

• Rubustness?

• Speed?

• Compile safety?

• Tool support?

• Global data consistency lowered no strong references
between multiple service models (foreign keys, object
references...)

• APIs frequently batch oriented, not fine grained

Microservices – Cons (2)

• Redesigning much harder due to more people/components
involved premature architecture freeze

• Service versioning

• End-to-end testing much harder

• No single-thread debuggability (single stack trace etc...)

• Various little things, such as jumping between multiple log
outputs, multiple IDE projects ...

JavaScript front-ends

JavaScript front-end - Pros

• Much more powerful than server-side - more
attractive/responsive UI controls

• Faster (no need for server request/response for each action)

• Client-side caching

• No messing with:
• „Back” button

• Much easier to implement complex form (server-side „wizards”
require session state)

JavaScript front-end - Cons

• Burden of additional language
• Human resource management increase

• Harder knowledge sharing

• Language is easy, whole ecosystem is required:
• frameworks, libraries, build tools

• Front-end and back-end are
now distributed system!

Agency04 | info@ag04.com www,ag04.com

• Strive for simplicity; good code should be obvious and boring, not

adventure

• If you can improve something by removing, not adding more stuff,

that’s awesome!

• New tech’s drawbacks are rarely visible at first – be cautious with

evaluation

• Every project is exploration, there are multiple ways to approach

the problem – so explore!

• Don’t drown yourself in low level problems, question also high

level decisions - there are usually tremendous improvements

waiting to be discovered

