
Adventures with Kafka
Marko Štrukelj & Aleš Justin

OpenBlend

Agenda

• Kafka intro

• What we learned

• Kafka API

• Kafka on GCP / Kubernetes

Kafka?
Kafka® is used for building real-
time data pipelines and streaming
apps. It is horizontally
scalable, fault-tolerant, wicked
fast, and runs in production in
thousands of companies.

Kafka?
• Publish & Subscribe

• Like a messaging service

• Process

• Distributed, fault-tolerant events handling

• On the clients

• Store

• Distributed, replicated, fault-tolerant storage

• On the brokers

Kafka?
• Concepts

• Cluster of Kafka servers aka brokers (ZooKeeper + Kafka)

• Storing streams of records in topics

• <key, value, timestamp> = record

• Core APIs

• Producer

• Consumer

• Streams

• Connector (*)

Kafka?
• Communication

• Client <—> Server

• Simple, high-performance, language agnostic TCP protocol

• Versioned and back-compatible protocol

• Java client by default, support for other languages also available

• Topics (stream of records)

• Named

• Partitioned (ordered, immutable sequence — offset / partition)

• Multi-subscriber (0, 1, many)

• Retention period

Kafka?

Kafka?
• Producers

• record target: <topic, partition>

• partition = hash(<key>) % (#of partitions)

• Produced Record(s) distribution and persistence (from producers to brokers)

• Leaders (for each <topic, partition>) vs. Followers

• Consumers

• Each consumer is a single thread of consumption of records from
subscribed topic(s)

• There can be multiple consumers subscribed to same topic(s)

• May be grouped into consumer groups (consumer group name)

Kafka?

• Consumed Record(s) distribution (from brokers to consumers)

• Each consumer group receives a separate copy of all records
from subscribed topic(s) (pub-sub)

• Each consumer in a consumer group receives records from a
disjunctive subset of partitions from subscribed topic(s)
(queue)

• Ordering is guaranteed only within <topic, partition>

• Auto-rebalance -- dynamic (re)assignment of subsets of <topic,
partition>(s) among "live" consumers of a consumer group

Consumer Groups

Kafka?
• Storage System

• Guaranteed / ack

• Same perf (50KB vs 50TB)

• Read position (offset)

• Stream Processing

• Streams API — hides complexity

• Built on core primitives

Trivia
• Kafka was developed in 2010 at LinkedIn.

LinkedIn was facing a problem of low latency
ingestion of a large amount of data from the
website into a lambda architecture which would
be able to process events in real-time.

• In 2017, Pintrest built and open-sourced
DoctorKafka, a Kafka operations automation
service to perform partition reassignment during
broker failure for operation automation.

Our use case

• Microservices app

• SpringBoot based

• Running on GoogleCloudPlatform / Kubernetes

• Using Strimzi to run Kafka servers / brokers

Strimzi
• Kubernetes operator for Kafka

• Provides easy deployment of ZooKeeper and
Kafka clusters using StatefulSets

• Automatically applies cluster configuration
changes

• Provides automatic rebalancing when cluster
configuration changes

Strimzi

Strimzi
• Running one distributed system (Kafka brokers)

that depends on another distributed system
(ZooKeeper cluster) on top of a distributed
system (Kubernetes) on top of virtual networking
and using mounted network volumes for files
(instead of local disks).

• What could possibly go wrong :)

Lessons learned!
• Spring-Kafka — yes or no?

• Started with “yes”, ended with “no”

• Reason(s)?

• Started - as always :-) - as a bug fix

• Specific needs -> custom code

“No” Spring-Kafka
• Producer

• Async-wrapper

• Recreating on fatal errors (some fatal responses from
broker(s) require re-establishing the producer)

• Result as CompletableFuture

• What about tx?

• Long-tx span + send on commit == slow

• Rather used a chain of Futures + compensate

“No” Spring-Kafka
• Consumer / listener

• It’s actually a client doing polling all the time

• With exponential re-try on failure (till max delay)

• Proper thread / concurrency handling

• Dynamically re-assign topics / partitions

• Dynamically re-size consumers

Lessons learned!
• Serialization

• Everything is ProtoBuf

• Tracing

• Wrappers - producer / consumer

• Write / read to/from record headers

Lessons learned!
• Streams

• Window-ing is easy and very useful

• Consider (ReadOnly)KeyValueStore over DB

• Distributed lookup (per key) over gRPC

• gRPC has streaming ;-)

Lessons learned!

• Cluster configuration

• For production use 3 ZooKeeper instances

• For production use 3 Kafka instances or more
but make it an odd number

Lessons learned!

• Topic configuration

• For fault tolerance and robustness use 3
replicas and a minimum in-sync replicas of 2

Strimzi related issues
• Broker restart requires client restarts because

a new broker gets a new IP address
(Kubernetes stateful sets behaviour)

• One day everything just stops working. There
is a problem accessing log files. Turns out
when you’re in the cloud and mounting
network volumes things can go wrong at your
cloud provider. There was a filesystem
corruption on the persistent volume.

Strimzi related issues
• Killing Kubernetes brokers results in unclean

shutdown (leaves index files corrupted)

• Corrupted indexes are automatically rebuilt on
restart - may take a long time (several hours if
you have many topics / partitions with a lot of
records).

• Override liveness probe for Kafka pods - set
initialDelaySeconds to a big value, effectively
turning it off.

Strimzi related issues
• Asymetric network failures

• 5 brokers

• Brokers 1,2,3,4 complain they can’t connect
to broker 5

• Broker 5 is oblivious of any issues, its
partitions are not available to clients (service
not available!)

Configuration issues
• Topic retention

• By default your records get deleted if older than a
week

• When creating a topic set retention period explicitly

• Max message size

• There is message size limit on brokers fetching
replicas from other brokers. Your cluster can get
stuck on too big messages that can’t be replicated.

Key Lessons
• Kafka Cluster can suffer a failure

• Test your application with realistic data - in terms of
numbers of messages, sizes of messages, data
ingestion rates.

• Give testing phase enough time. Some issues you’ll
see for the first time only after months of test usage.

• Consider using Mirror Maker to keep another cluster
fully in-sync so you can switch over if needed to
quickly recover from the outage.

Ping?

• ales.justin@openblend.org

• @alesj

Q & A

