
QUALITY. PRODUCTIVITY. INNOVATION.

An
Modularize your 

Angular application in 
two weeks

endava.com

two weeks



Modularize your 
Angular application in 

two weeks

·

·

·

·

·

2

·

·

·

Problems / Motivation

Monolithic V.S. Modularized Apps

How to implement modularization?

Current situation with modularization

New approachesNew approaches

Demo

Tools that we must use

QUALITY. PRODUCTIVITY. INNOVATION.



3

Modularization

Restaurant approach

• Customer (Client) orders a meal

• Waiter (PM) takes the order

• Chef (Developer) prepares the meal

• Sauce chef decorator (Designer)

- Make it look beautiful 3

3

- Make it look beautiful

• Tester tastes the meal

• At the end Waiter serves the meal

33

QUALITY. PRODUCTIVITY. INNOVATION.



4

Modularization

Problems that we want to solve and what we want to achieve

• Reuse the code

• Ease of maintenance / testing

- Prepare for continuous integration

• Extensibility / new features

• Increase development speed

• Speed up the build of similar applications 4

4

• Speed up the build of similar applications

- Reusable modules for other applications
(regardless of domain)

44

QUALITY. PRODUCTIVITY. INNOVATION.



5

Modularization

Same goals but with different approach

Reuse the code Other orders can have same starter?

Ease maintenance Not all of us want chicken with curry

Testing Ingredient can be tasted, but also the meal5

5

Testing Ingredient can be tasted, but also the meal

Extensibility / new features Client can order multiple meals

Increase development speed Recipes how to prepare meals

Solution is simple: Use 
Modules! But how?

5

Other orders can have same starter?

Not all of us want chicken with curry

Ingredient can be tasted, but also the meal5

QUALITY. PRODUCTIVITY. INNOVATION.

Ingredient can be tasted, but also the meal

Client can order multiple meals

Recipes how to prepare meals



6

Monolith applications

Monolith Apps

• What is monolith app?

• Is angular monolith?

• What is module, or what should be?

• How to distribute a module?

6

6

66

QUALITY. PRODUCTIVITY. INNOVATION.



7

DEMO

7

7

77

QUALITY. PRODUCTIVITY. INNOVATION.



8

Evolution of software architecture 

8

8

8

Evolution of software architecture 

8

QUALITY. PRODUCTIVITY. INNOVATION.



9

Modularization

Benefits of using modules

• Distributed / independent development

• Code reusability

• Program readability / quality

- make some common module bower component?

• Encapsulation (module is a function)

• Manageable tasks 9

9

• Manageable tasks

- Design, implement and test

99

QUALITY. PRODUCTIVITY. INNOVATION.



10

Actual vs. expected design

10

10

1010

QUALITY. PRODUCTIVITY. INNOVATION.



11

How to implement modularization

Think s lot!

2 approaches when you need to 

• Starting from scratch 

- Think about every feature is a module to be reused in any kind of app

• Existing project

- Total reorganization of code

- REFACTOR 11

11

- REFACTOR

- OR delete all code and start from scratch ☺

11

How to implement modularization

Think about every feature is a module to be reused in any kind of app

11

QUALITY. PRODUCTIVITY. INNOVATION.



12

How to do it?

Headline

Define meaning of module

• business vs. common module

Work in parallel between the teams:

• grouping / refactoring business code

- (top down approach)

• grouping refactoring common code 12

12

• grouping refactoring common code

- (bottom up)

• While other team is making all compatible 
with build scripts, module distribution, CI

1212

QUALITY. PRODUCTIVITY. INNOVATION.



13

Business Modules

Business Modules

• Structure

• Module definition: config / routes / dependencies

• Controllers: services, model

• View: html / directives

- More directives, less views 13

13

- More directives, less views

• Other resources: css, images,

• Examples:

- Starter meal

- Main dish

- Dessert

1313

QUALITY. PRODUCTIVITY. INNOVATION.



14

Common Modules

Common Modules

• Same structure as business modules

• Mainly services and providers

• Html, directives for common UI components 

• View: html / directives

- More directives, less views 14

14

- More directives, less views

• Other resources: css, images,

• Examples:

- Starter meal

- Main dish

- Dessert

1414

QUALITY. PRODUCTIVITY. INNOVATION.



15

DEMO

15

15

1515

QUALITY. PRODUCTIVITY. INNOVATION.



16

Going even further

Not only separate folders, but separate repos/versions

• bower

• Node modules

• Git submodules

Maven like modules/artifacts

16

16

Each module has its own definition

1616

QUALITY. PRODUCTIVITY. INNOVATION.



17

New version and the power of modularization

New Version

Java2day 1.0

• Starter 1.3

• Main dish 1.1

• Dessert 1.5

Java2mmorow 1.0

• Main dish 1.4 17

17

• Main dish 1.4

• Dessert

17

New version and the power of modularization

17

QUALITY. PRODUCTIVITY. INNOVATION.



18

How some app would look like

18

18

18

How some app would look like

18

QUALITY. PRODUCTIVITY. INNOVATION.



19

New approaches

ES 6

• A lot of cool features

- Out of the box modules

- Generators, arrow, object literals, string interpolation etc.

- But do we really need Classes? Why it is bringing the OO design in already perfect functional 
language?

19

19

React JS

• Currently most trending and promising way of building applications that perfectly matches ES 6

• Angular 2 is basically “stealing” the good practices from React

19

Generators, arrow, object literals, string interpolation etc.

But do we really need Classes? Why it is bringing the OO design in already perfect functional 

19

QUALITY. PRODUCTIVITY. INNOVATION.

Currently most trending and promising way of building applications that perfectly matches ES 6

Angular 2 is basically “stealing” the good practices from React



20

Tools that we must use regardless framework 
that we use

• Build tools

• Grunt

• Gulp

• Webpack

• Brunch and the list goes to infinity

• Regardless which one is better we must use one!

20

20

• Do we really use the potential of our IDE?

• Running projects

• Debbuging?

• Easy refactoring

20

Tools that we must use regardless framework 

use one!

20

QUALITY. PRODUCTIVITY. INNOVATION.



21

How you will benefit from the modularized 
app

Similar different client requirements

Backbase wants different apps and extensions 

• Easy extension to current apps

• Different style 

• Similar but still different set of features

- Add new feature

- Change old ones 21

21

- Change old ones

• Make all of the components reusable 

21

How you will benefit from the modularized 

21

QUALITY. PRODUCTIVITY. INNOVATION.



22

Modularization summary

Pros

▪ Increased speed of development 

▪ Testable code, less regression bugs

▪ Faster, more secure application (sealed package)

▪ Improved the process of new app creation

▪ Ready for Continuous Integration 22

22

▪ Ready for Continuous Integration

Cons

▪ Maintenance of module repositories is more time consuming

● New repo, merge, versioning, etc.

▪ Needs a lot of attention when creating a business module

● make it independent from other business modules

2222

QUALITY. PRODUCTIVITY. INNOVATION.

Maintenance of module repositories is more time consuming

Needs a lot of attention when creating a business module



23

Obstacles

Things that you should consider always

Code everywhere

• it’s hard to gain control with a monolithic design

Plug-ability of modules

• make them aware of each other using module manager / registration
23

23

Generic common features

• menu, i18n bundles, configuration, caching, etc.

23

it’s hard to gain control with a monolithic design

make them aware of each other using module manager / registration
23

QUALITY. PRODUCTIVITY. INNOVATION.

menu, i18n bundles, configuration, caching, etc.



Questions?

Goran Kopevski
Senior Developer

24

Goran Kopevski
Senior Developer

QUALITY. PRODUCTIVITY. INNOVATION.

goran.kopevski@endava.com

+389 70 949 363

en_gkopevski


